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Abstract

A Newtonian viscous rheology was assumed for the matrix around the microboudins of columnar mineral grains in metamorphic

tectonites, and a new expression was derived for predicting the proportion of boudinaged grains as a function of the aspect ratio of the

columnar grains and the magnitude of far-field differential stress. The predicted proportion was compared with the measured proportions of

tourmaline, piemontite and sodic amphibole in seven samples from various orogenic belts. The comparison revealed that the predictions were

remarkably different from the measured values. This suggests that the viscous-matrix model cannot be applied to the stress state of the matrix

during microboudinage.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In studies on natural solid-state deformation from the

microscopic to global scales, rocks and minerals are usually

approximated as viscous materials. This is because it is

easier to analyse viscous materials than solid-state materials

theoretically and experimentally. For instance, Ramberg

(1955) performed analogue-model experiments and viscous

mechanical analyses to study boudinage of competent strata,

MacKenzie (1979) simulated mantle convection by fluid

dynamics, and Masuda and Ando (1988) analysed the

deflection of viscous flow around a rigid spherical body.

Experimental studies using a Newtonian viscous material

also provide fruitful results (e.g. Weijermars, 1986;

Passchier and Sokoutis, 1993; Arbaret et al., 2001;

Mancktelow et al., 2002). The results of these studies are

apparently all applicable to the interpretation of the strain

patterns in natural deformation. However, solid-state

deformation is significantly different from the Newtonian

viscous state. Therefore, there is a need to evaluate if

Newtonian viscous analysis is applicable to the solid-state

deformation of rocks. In most cases we cannot reasonably

accept or deny the applicability, because we have no

suitable criteria by which to judge it. This paper analyses the

stress state during the microboudinage of columnar mineral

grains in metamorphic tectonites by which we can judge the

applicability of the approach.

2. Stages in microboudinage

Consider microboudinage of competent columnar min-

eral grains in metamorphic tectonites (e.g. Misch, 1969;

Masuda et al., 1989; Ji and Zhao, 1993). Fig. 1 shows typical

examples of microboudins of tourmaline and sodic

amphibole embedded within a quartzose matrix. The

microboudinage of a competent grain into two separate

segments (microboudins) can be well represented by the

following three stages (Fig. 2): (1) before fracturing: the

stress imposed on the rock matrix (far-field stress) is

transferred to the competent grain to induce local stress; (2)

fracturing: the competent grain fractures when the local

stress generated in the grain exceeds the grain strength; and

(3) separation: segments after fracturing are pulled apart

within the matrix and the matrix material penetrates into the

inter-boudin gaps. These three stages can repeat to form

several microboudins from one single columnar grain when

the applied stress continues to increase. If the stress

decreases, the separation continues to form wider inter-

boudin gaps but no new fracturing occurs. The microboudin
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structures freeze when the matrix material ultimately ceases

to flow due to the decrease in temperature (e.g. Masuda

et al., 1990). As the matrix and the competent material are

never molten during the three stages in the metamorphic

processes, the microboudinage occurs purely in the solid-

state. This paper is mainly concerned with the stages (1) and

(2).

3. Basic data of microboudin structures for the stress

analysis

Seven pre-analysed samples of metamorphic tectonites

were re-used to test the applicability of the viscous matrix

model. Masuda et al. (2003, 2004) presented tourmaline

boudins from Greenbushes (latest Archaean, Western

Australia) and Wadi Tayin (Cretaceous, Sultanate of

Oman), piemontite boudins from four localities (Nupor-

omaporo, Yamagami, Asemi and Matsunosako) in Japan

and sodic amphibole boudins from Aksu (late Proterozoic,

NW China). The matrices of these seven samples are

quartzose. The basic data for the applicability test consists

of a proportion of boudinaged grains with respect to the

aspect ratio of the columnar mineral grains. The frequency

distributions of boudinaged and intact columnar grains are

shown in Fig. 3, and the proportions of boudinaged grains

Fig. 1. Photomicrographs of the microboudinaged grains. (a) Sodic amphibole boudins from Aksu, China. (b) Tourmaline boudins fromWadi Tayin, Sultanate

of Oman.

Fig. 2. Schematic drawing of microboudinage. (a) Pre-fracturing stage, (b)

fracturing stage, (c) being-separated stage.

Fig. 3. Frequency distributions of boudinaged and intact columnar mineral

grains. The data are reproduced from Masuda et al. (2003, 2004). (a) Sodic

amphibole from Aksu, China, (b) tourmaline fromWadi Tayin, Sultanate of

Oman, (c) tourmaline from Greenbushes, Australia, (d) piemontite from

Nuporomaporo, Japan, (e) piemontite from Yamagami, Japan, (f)

piemontite from Matsunosako, Japan, and (g) piemontite from Asemi,

Japan.
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are plotted in Fig. 4. The proportion is designated as M(r)

and used in later analysis.

4. Application of the viscous model to boudinage

Ramberg (1955) solved the stress-state in a competent

layer subjected to one-dimensional elongation as a function

of the strain rate of the surrounding Newtonian viscous

matrix. The boudinage is caused by the drag force of the

viscous matrix on the competent layer when the matrix

flows along the layer (Fig. 5). The competent layer is

assumed to be elastic before rupture. The relationship

between the compressive strain rate of the matrix along the

z-axis, 2›ðz=ziÞ=›t, and the tensile stress within the

competent layer, s(x) is expressed as:

sðxÞ ¼
6m

zcz
2
i

2
›z

›t

� �
l2 2 x2
� �

ð1Þ

where m is viscosity of the matrix, and zc and zi are the

thickness of competent layer and matrix, respectively, l is

the half-length of the layer, and x is the distance from the

centre of the layer perpendicular to the expected fracture

plane (Ramberg, 1955, p. 524). The width of the layer (y)

does not affect the magnitude of the stress. The strain rate is

related to the far-field differential stress (s0) as:

s0 ¼
m

zi
2

›z

›t

� �
ð2Þ

Thus, substituting Eq. (2) into Eq. (1), a simple equation

that encompasses the local stress in the competent layer and

far-field stress is derived as:

sðxÞ ¼
6s0

zczi
l2 2 x2
� �

ð3Þ

5. Derivation of a new probability distribution function

of fracturing

Eq. (3) can be modified to predict the proportion of

boudinaged grains with respect to the aspect ratio of

columnar mineral grains in a manner that is similar to that

presented by Masuda et al. (2003) as follows. The maximum

tensile stress occurs at the centre of the layer (x ¼ 0), and

the value (s) is given by

s ¼
6s0l

2

zczi
ð4Þ

As fracturing usually occurs in the central part of the

grain (see Masuda and Kuriyama, 1988), this value of stress

is regarded as being representative for subsequent analysis.

The aspect ratio (r) of the competent layer is given by:

r ¼
2l

zc
ð5Þ

By using Eqs. (4) and (5), the relationship between the

stress and the aspect ratio is simply written as:

s ¼ Kr2 ð6Þ

where

K ¼
3s0zc
2zi

ð7Þ

Fig. 4. Proportion of boudinaged grains with respect to aspect ratio. The

plotted data are reproduced from Masuda et al. (2003, 2004). For the data

from (a)–(g), see Fig. 3. Solid and open circles indicate reliable and

unreliable data (.25 measured grains are regarded as reliable). The curve

represents the best-fit Gvðr; cÞ using reliable data. Each l-value is

indicated.

Fig. 5. Setting of the Newtonian viscous model simplified after Ramberg

(1955). The simplification is guaranteed by the fact that the width of the

boudinaged layer does not affect the magnitude of stress in the layer

(Ramberg, 1955). For parameters see Appendix A.
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K is regarded as a parameter proportional to the far-field

stress, s0.

The fracturing of competent grains is described statisti-

cally. The weakest-link theory (e.g. Weibull, 1939; Epstein,

1948; Masuda et al., 2003, 2004) shows that the probability

distribution function of fracture strength, Gvðr; sÞ, is given

as a function of r and s:

Gvðr; sÞ ¼ 12 exp 2
m2 1

m
r

s

Sp

� �m� �
ð8Þ

where m is the Weibull modulus and S p is the modal

fracture strength of the competent material at r ¼ 1: m and

S p are regarded as constants depending on materials. By

substituting Eq. (6) into Eq. (8), we obtain:

Gvðr; sÞ ¼ 12 exp 2
m2 1

m
r

Kr2

Sp

 !m" #

¼ 12 exp 2
m2 1

m
r2mþ1 K

Sp

� �m� �
ð9Þ

A new dimensionless stress parameter c is introduced as:

c ¼
K

Sp
¼

3

2

zc
zi

s0

Sp
ð10Þ

By using c, the probability distribution function finally

becomes:

Gvðr; sÞ ¼ 12 exp 2
m2 1

m
r2mþ1cm

� �
ð11Þ

6. Determination of the stress parameter c

The proportion of boudinaged grains was measured

independently with respect to the aspect ratio of the boudin

materials, M(r). M(r) is a natural data set compared with

Gvðr; sÞ. The value of c can be determined by the method

of least-squares. T(c) is defined as:

TðcÞ ¼
X
r

Gvðr; cÞ2MðrÞ
� �2

ð12Þ

and c is obtained so as to minimize T(c). However, m in Eq.

(11) is also unknown and is regarded as a parameter to be

obtained. The value of m and c are determined so as to

minimize T(m, c):

Tðm; cÞ ¼
X

Gvðr; m; cÞ2MðrÞ
� �2

ð13Þ

The obtained values of m and c and the best-fit

Gvðr; m; cÞ for each sample are shown in Fig. 4.

7. Evaluation of fitting: is the viscous-matrix model

applicable?

The fit of Gvðr; m; cÞ to M(r) appears inappropriate, as

shown in Fig. 4. The fit was evaluated using the x2-test

(Cheeney, 1983) and the results showed that the fitting is not

appropriate statistically. Thus, it is obvious that the

Newtonian viscous-matrix model cannot well express the

stress state in columnar mineral grains embedded within

the solid-state matrix.

8. Applicability of the elastic-matrix model

In contrast, the elastic-matrix model (shear-lag model of

e.g. Zhao and Ji, 1997) was successfully applied to the

microboudinage structures of the seven samples as shown in

Masuda et al. (2003, 2004). The principal of the method is

that the solid matrix elastically transmits the far-field stress

to the fibre minerals (e.g. Lloyd et al., 1982; Zhao and Ji,

1997; Masuda et al., 2003, 2004), and that the theoretically

derived probability distribution of the fracturing of fibre-

grains is described by G(r, l) as a function of the aspect

ratio (r) and the far-field differential stress (s0) as:

Gðr; lÞ ¼

12 exp 2
m2 1

m
rlm

Ef

Eq

 !m

12 12
Eq

Ef

� �
1

coshðArÞ

	 
m" #

ð14Þ

where Eq and Ef are the elastic constants of the matrix and

fibre, respectively, and A is a constant. l is defined as:

l ¼
s0

Sp
ð15Þ

As in the viscous-matrix model, the theoretical and

measured values were compared. The best-fit results in Fig.

6 are reproduced from Masuda et al. (2003, 2004). The

validity of the fitting was proved statistically inMasuda et al.

(2003, 2004). This figure shows that the elastic-matrix

model can be successfully applied to the microboudinage.

9. Discussion and implications

The Newtonian viscous-matrix model cannot simulate

the stress-state during microboudinage, whereas the elastic-

matrix model was successfully applied to the microbou-

dinage structures. As the microboudinage took place in the

solid-state during metamorphism, this result is under-

standable and acceptable.

There may be many other cases in which viscous theory

appears to be successfully applied and thereby promotes

misunderstanding. In order to prevent this from occurring,

we must understand the limits of the applicability of the
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viscous model to solid-state deformation. Our knowledge of

the difference between ‘viscous’ and ‘solid-state’ remains

incomplete.
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Appendix A. Notations

x, y and z: Cartesian coordinates

m: Newtonian viscosity

zc: thickness of competent layer

zi: thickness of matrix

l: half length of competent layer

s: differential stress within competent layer

s0: far-field differential stress

2›ðz=ziÞ=›t: compressional strain rate along the z axis

r: aspect ratio of columnar mineral grain

K: a parameter proportional to s0

Gv: probability distribution function of fracturing

based on the viscous-matrix model

S p: fracture strength of boudin material

m: Weibull modulus

M: measured proportion of boudinaged grains

T: square difference between Gv and M

c: stress parameter based on viscous-matrix model

G: probability distribution function of fracturing

based on the elastic-matrix model

l: stress parameter for elastic-matrix model

Eq: Young’s modulus of matrix

Ef: Young’s modulus of columnar mineral

A: a constant
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